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8.2 Orthogonal Diagonalization

Recall (Theorem 5.5.3) that an n×n matrix A is diagonalizable if and only if it has n linearly inde-
pendent eigenvectors. Moreover, the matrix P with these eigenvectors as columns is a diagonalizing
matrix for A, that is

P−1AP is diagonal.
As we have seen, the really nice bases of Rn are the orthogonal ones, so a natural question is:
which n×n matrices have an orthogonal basis of eigenvectors? These turn out to be precisely the
symmetric matrices, and this is the main result of this section.

Before proceeding, recall that an orthogonal set of vectors is called orthonormal if ‖v‖= 1 for
each vector v in the set, and that any orthogonal set {v1, v2, . . . , vk} can be “normalized”, that is
converted into an orthonormal set { 1

‖v1‖v1, 1
‖v2‖v2, . . . , 1

‖vk‖vk}. In particular, if a matrix A has n
orthogonal eigenvectors, they can (by normalizing) be taken to be orthonormal. The corresponding
diagonalizing matrix P has orthonormal columns, and such matrices are very easy to invert.

Theorem 8.2.1
The following conditions are equivalent for an n×n matrix P.

1. P is invertible and P−1 = PT .

2. The rows of P are orthonormal.

3. The columns of P are orthonormal.

Proof. First recall that condition (1) is equivalent to PPT = I by Corollary 2.4.1 of Theorem 2.4.5.
Let x1, x2, . . . , xn denote the rows of P. Then xT

j is the jth column of PT , so the (i, j)-entry of
PPT is xi ·x j. Thus PPT = I means that xi ·x j = 0 if i 6= j and xi ·x j = 1 if i = j. Hence condition
(1) is equivalent to (2). The proof of the equivalence of (1) and (3) is similar.

Definition 8.3 Orthogonal Matrices

An n×n matrix P is called an orthogonal matrix2if it satisfies one (and hence all) of the
conditions in Theorem 8.2.1.

Example 8.2.1

The rotation matrix
[

cosθ −sinθ

sinθ cosθ

]
is orthogonal for any angle θ .

These orthogonal matrices have the virtue that they are easy to invert—simply take the trans-
pose. But they have many other important properties as well. If T : Rn → Rn is a linear operator,

2In view of (2) and (3) of Theorem 8.2.1, orthonormal matrix might be a better name. But orthogonal matrix is
standard.
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we will prove (Theorem ??) that T is distance preserving if and only if its matrix is orthogonal. In
particular, the matrices of rotations and reflections about the origin in R2 and R3 are all orthogonal
(see Example 8.2.1).

It is not enough that the rows of a matrix A are merely orthogonal for A to be an orthogonal
matrix. Here is an example.

Example 8.2.2

The matrix

 2 1 1
−1 1 1

0 −1 1

 has orthogonal rows but the columns are not orthogonal.

However, if the rows are normalized, the resulting matrix


2√
6

1√
6

1√
6

−1√
3

1√
3

1√
3

0 −1√
2

1√
2

 is orthogonal (so

the columns are now orthonormal as the reader can verify).

Example 8.2.3

If P and Q are orthogonal matrices, then PQ is also orthogonal, as is P−1 = PT .

Solution. P and Q are invertible, so PQ is also invertible and

(PQ)−1 = Q−1P−1 = QT PT = (PQ)T

Hence PQ is orthogonal. Similarly,

(P−1)−1 = P = (PT )T = (P−1)T

shows that P−1 is orthogonal.

Definition 8.4 Orthogonally Diagonalizable Matrices

An n×n matrix A is said to be orthogonally diagonalizable when an orthogonal matrix
P can be found such that P−1AP = PT AP is diagonal.

This condition turns out to characterize the symmetric matrices.

Theorem 8.2.2: Principal Axes Theorem

The following conditions are equivalent for an n×n matrix A.

1. A has an orthonormal set of n eigenvectors.

2. A is orthogonally diagonalizable.
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3. A is symmetric.

Proof. (1) ⇔ (2). Given (1), let x1, x2, . . . , xn be orthonormal eigenvectors of A. Then P =[
x1 x2 . . . xn

]
is orthogonal, and P−1AP is diagonal by Theorem 3.3.4. This proves (2). Con-

versely, given (2) let P−1AP be diagonal where P is orthogonal. If x1, x2, . . . , xn are the columns
of P then {x1, x2, . . . , xn} is an orthonormal basis of Rn that consists of eigenvectors of A by
Theorem 3.3.4. This proves (1).

(2) ⇒ (3). If PT AP = D is diagonal, where P−1 = PT , then A = PDPT . But DT = D, so this gives
AT = PT T DT PT = PDPT = A.

(3) ⇒ (2). If A is an n×n symmetric matrix, we proceed by induction on n. If n = 1, A is already
diagonal. If n> 1, assume that (3) ⇒ (2) for (n−1)×(n−1) symmetric matrices. By Theorem 5.5.7
let λ1 be a (real) eigenvalue of A, and let Ax1 = λ1x1, where ‖x1‖ = 1. Use the Gram-Schmidt
algorithm to find an orthonormal basis {x1, x2, . . . , xn} for Rn. Let P1 =

[
x1 x2 . . . xn

]
, so

P1 is an orthogonal matrix and PT
1 AP1 =

[
λ1 B
0 A1

]
in block form by Lemma 5.5.2. But PT

1 AP1 is

symmetric (A is), so it follows that B = 0 and A1 is symmetric. Then, by induction, there exists an

(n−1)×(n−1) orthogonal matrix Q such that QT A1Q=D1 is diagonal. Observe that P2 =

[
1 0
0 Q

]
is orthogonal, and compute:

(P1P2)
T A(P1P2) = PT

2 (PT
1 AP1)P2

=

[
1 0
0 QT

][
λ1 0
0 A1

][
1 0
0 Q

]
=

[
λ1 0
0 D1

]
is diagonal. Because P1P2 is orthogonal, this proves (2).

A set of orthonormal eigenvectors of a symmetric matrix A is called a set of principal axes for
A. The name comes from geometry, and this is discussed in Section ??. Because the eigenvalues of
a (real) symmetric matrix are real, Theorem 8.2.2 is also called the real spectral theorem, and
the set of distinct eigenvalues is called the spectrum of the matrix. In full generality, the spectral
theorem is a similar result for matrices with complex entries (Theorem ??).

Example 8.2.4

Find an orthogonal matrix P such that P−1AP is diagonal, where A =

 1 0 −1
0 1 2

−1 2 5

.

Solution. The characteristic polynomial of A is (adding twice row 1 to row 2):

cA(x) = det

 x−1 0 1
0 x−1 −2
1 −2 x−5

= x(x−1)(x−6)
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Thus the eigenvalues are λ = 0, 1, and 6, and corresponding eigenvectors are

x1 =

 1
−2

1

 x2 =

 2
1
0

 x3 =

 −1
2
5


respectively. Moreover, by what appears to be remarkably good luck, these eigenvectors are
orthogonal. We have ‖x1‖2 = 6, ‖x2‖2 = 5, and ‖x3‖2 = 30, so

P =
[

1√
6
x1

1√
5
x2

1√
30

x3

]
= 1√

30


√

5 2
√

6 −1
−2

√
5

√
6 2√

5 0 5


is an orthogonal matrix. Thus P−1 = PT and

PT AP =

 0 0 0
0 1 0
0 0 6


by the diagonalization algorithm.

Actually, the fact that the eigenvectors in Example 8.2.4 are orthogonal is no coincidence.
Theorem 5.5.4 guarantees they are linearly independent (they correspond to distinct eigenvalues);
the fact that the matrix is symmetric implies that they are orthogonal. To prove this we need the
following useful fact about symmetric matrices.

Theorem 8.2.3
If A is an n×n symmetric matrix, then

(Ax) ·y = x · (Ay)

for all columns x and y in Rn.3

Proof. Recall that x ·y = xT y for all columns x and y. Because AT = A, we get

(Ax) ·y = (Ax)T y = xT AT y = xT Ay = x · (Ay)

Theorem 8.2.4
If A is a symmetric matrix, then eigenvectors of A corresponding to distinct eigenvalues are
orthogonal.

3The converse also holds (Exercise 8.2.15).
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Proof. Let Ax = λx and Ay = µy, where λ 6= µ . Using Theorem 8.2.3, we compute

λ (x ·y) = (λx) ·y = (Ax) ·y = x · (Ay) = x · (µy) = µ(x ·y)

Hence (λ −µ)(x ·y) = 0, and so x ·y = 0 because λ 6= µ .

Now the procedure for diagonalizing a symmetric n×n matrix is clear. Find the distinct eigenval-
ues (all real by Theorem 5.5.7) and find orthonormal bases for each eigenspace (the Gram-Schmidt
algorithm may be needed). Then the set of all these basis vectors is orthonormal (by Theorem 8.2.4)
and contains n vectors. Here is an example.

Example 8.2.5

Orthogonally diagonalize the symmetric matrix A =

 8 −2 2
−2 5 4

2 4 5

.

Solution. The characteristic polynomial is

cA(x) = det

 x−8 2 −2
2 x−5 −4
−2 −4 x−5

= x(x−9)2

Hence the distinct eigenvalues are 0 and 9 of multiplicities 1 and 2, respectively, so
dim (E0) = 1 and dim (E9) = 2 by Theorem 5.5.6 (A is diagonalizable, being symmetric).
Gaussian elimination gives

E0(A) = span{x1}, x1 =

 1
2

−2

 , and E9(A) = span


 −2

1
0

 ,

 2
0
1


The eigenvectors in E9 are both orthogonal to x1 as Theorem 8.2.4 guarantees, but not to
each other. However, the Gram-Schmidt process yields an orthogonal basis

{x2, x3} of E9(A) where x2 =

 −2
1
0

 and x3 =

 2
4
5


Normalizing gives orthonormal vectors {1

3x1, 1√
5
x2, 1

3
√

5
x3}, so

P =
[

1
3x1

1√
5
x2

1
3
√

5
x3

]
= 1

3
√

5


√

5 −6 2
2
√

5 3 4
−2

√
5 0 5


is an orthogonal matrix such that P−1AP is diagonal.
It is worth noting that other, more convenient, diagonalizing matrices P exist. For example,

y2 =

 2
1
2

 and y3 =

 −2
2
1

 lie in E9(A) and they are orthogonal. Moreover, they both
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have norm 3 (as does x1), so

Q =
[ 1

3x1
1
3y2

1
3y3

]
= 1

3

 1 2 −2
2 1 2

−2 2 1


is a nicer orthogonal matrix with the property that Q−1AQ is diagonal.

O
x1x2 = 1

x1

x2

O y2
1 − y2

2 = 1

y1y2

If A is symmetric and a set of orthogonal eigenvectors of A is given,
the eigenvectors are called principal axes of A. The name comes from
geometry. An expression q = ax2

1 +bx1x2 + cx2
2 is called a quadratic

form in the variables x1 and x2, and the graph of the equation q = 1 is
called a conic in these variables. For example, if q = x1x2, the graph
of q = 1 is given in the first diagram.

But if we introduce new variables y1 and y2 by setting x1 = y1+y2
and x2 = y1−y2, then q becomes q = y2

1−y2
2, a diagonal form with no

cross term y1y2 (see the second diagram). Because of this, the y1 and
y2 axes are called the principal axes for the conic (hence the name).
Orthogonal diagonalization provides a systematic method for finding
principal axes. Here is an illustration.

Example 8.2.6

Find principal axes for the quadratic form q = x2
1 −4x1x2 + x2

2.

Solution. In order to utilize diagonalization, we first express q in matrix form. Observe that

q =
[

x1 x2
][ 1 −4

0 1

][
x1
x2

]
The matrix here is not symmetric, but we can remedy that by writing

q = x2
1 −2x1x2 −2x2x1 + x2

2

Then we have
q =

[
x1 x2

][ 1 −2
−2 1

][
x1
x2

]
= xT Ax

where x =

[
x1
x2

]
and A =

[
1 −2

−2 1

]
is symmetric. The eigenvalues of A are λ1 = 3 and

λ2 =−1, with corresponding (orthogonal) eigenvectors x1 =

[
1

−1

]
and x2 =

[
1
1

]
. Since

‖x1‖= ‖x2‖=
√

2, so

P = 1√
2

[
1 1

−1 1

]
is orthogonal and PT AP = D =

[
3 0
0 −1

]
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Now define new variables
[

y1
y2

]
= y by y = PT x, equivalently x = Py (since P−1 = PT ).

Hence
y1 =

1√
2
(x1 − x2) and y2 =

1√
2
(x1 + x2)

In terms of y1 and y2, q takes the form

q = xT Ax = (Py)T A(Py) = yT (PT AP)y = yT Dy = 3y2
1 − y2

2

Note that y = PT x is obtained from x by a counterclockwise rotation of π

4 (see
Theorem 2.4.6).

Observe that the quadratic form q in Example 8.2.6 can be diagonalized in other ways. For
example

q = x2
1 −4x1x2 + x2

2 = z2
1 − 1

3z2
2

where z1 = x1 −2x2 and z2 = 3x2. We examine this more carefully in Section ??.
If we are willing to replace “diagonal” by “upper triangular” in the principal axes theorem, we

can weaken the requirement that A is symmetric to insisting only that A has real eigenvalues.

Theorem 8.2.5: Triangulation Theorem

If A is an n×n matrix with n real eigenvalues, an orthogonal matrix P exists such that
PT AP is upper triangular.4

Proof. We modify the proof of Theorem 8.2.2. If Ax1 = λ1x1 where ‖x1‖= 1, let {x1, x2, . . . , xn}
be an orthonormal basis of Rn, and let P1 =

[
x1 x2 · · · xn

]
. Then P1 is orthogonal and PT

1 AP1 =[
λ1 B
0 A1

]
in block form. By induction, let QT A1Q = T1 be upper triangular where Q is of size

(n−1)× (n−1) and orthogonal. Then P2 =

[
1 0
0 Q

]
is orthogonal, so P = P1P2 is also orthogonal

and PT AP =

[
λ1 BQ
0 T1

]
is upper triangular.

The proof of Theorem 8.2.5 gives no way to construct the matrix P. However, an algorithm will
be given in Section ?? where an improved version of Theorem 8.2.5 is presented. In a different
direction, a version of Theorem 8.2.5 holds for an arbitrary matrix with complex entries (Schur’s
theorem in Section ??).

As for a diagonal matrix, the eigenvalues of an upper triangular matrix are displayed along the
main diagonal. Because A and PT AP have the same determinant and trace whenever P is orthogonal,
Theorem 8.2.5 gives:

4There is also a lower triangular version.
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Corollary 8.2.1

If A is an n×n matrix with real eigenvalues λ1, λ2, . . . , λn (possibly not all distinct), then
det A = λ1λ2 . . .λn and tr A = λ1 +λ2 + · · ·+λn.

This corollary remains true even if the eigenvalues are not real (using Schur’s theorem).

Exercises for 8.2

Exercise 8.2.1 Normalize the rows to make each
of the following matrices orthogonal.

A =

[
1 1

−1 1

]
a) A =

[
3 −4
4 3

]
b)

A =

[
1 2

−4 2

]
c)

A =

[
a b

−b a

]
, (a, b) 6= (0, 0)d)

A =

 cosθ −sinθ 0
sinθ cosθ 0

0 0 2

e)

A =

 2 1 −1
1 −1 1
0 1 1

f)

A =

 −1 2 2
2 −1 2
2 2 −1

g)

A =

 2 6 −3
3 2 6

−6 3 2

h)

b. 1
5

[
3 −4
4 3

]

d. 1√
a2+b2

[
a b

−b a

]

f.


2√
6

1√
6

− 1√
6

1√
3

− 1√
3

1√
3

0 1√
2

1√
2



h. 1
7

 2 6 −3
3 2 6

−6 3 2



Exercise 8.2.2 is diagonal and that all diagonal
entries are 1 or −1.
We have PT = P−1; this matrix is lower triangu-
lar (left side) and also upper triangular (right side–
see Lemma 2.7.1), and so is diagonal. But then
P = PT = P−1, so P2 = I. This implies that the diag-
onal entries of P are all ±1.

Exercise 8.2.3 If P is orthogonal, show that kP is
orthogonal if and only if k = 1 or k =−1.

Exercise 8.2.4 If the first two rows of an orthog-
onal matrix are (1

3 , 2
3 , 2

3) and (2
3 , 1

3 , −2
3 ), find all

possible third rows.

Exercise 8.2.5 For each matrix A, find an orthog-
onal matrix P such that P−1AP is diagonal.

A =

[
0 1
1 0

]
a) A =

[
1 −1

−1 1

]
b)

A =

 3 0 0
0 2 2
0 2 5

c) A =

 3 0 7
0 5 0
7 0 3

d)

A =

 1 1 0
1 1 0
0 0 2

e) A=

 5 −2 −4
−2 8 −2
−4 −2 5

f)

A =


5 3 0 0
3 5 0 0
0 0 7 1
0 0 1 7

g)
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A =


3 5 −1 1
5 3 1 −1

−1 1 3 5
1 −1 5 3

h)

b. 1√
2

[
1 −1
1 1

]

d. 1√
2

 0 1 1√
2 0 0
0 1 −1



f. 1
3
√

2

 2
√

2 3 1√
2 0 −4

2
√

2 −3 1

 or 1
3

 2 −2 1
1 2 2
2 1 −2



h. 1
2


1 −1

√
2 0

−1 1
√

2 0
−1 −1 0

√
2

1 1 0
√

2



Exercise 8.2.6 Consider A =

 0 a 0
a 0 c
0 c 0

 where

one of a, c 6= 0. Show that cA(x) = x(x −
k)(x + k), where k =

√
a2 + c2 and find an or-

thogonal matrix P such that P−1AP is diagonal.

P = 1√
2k

 c
√

2 a a
0 k −k

−a
√

2 c c


Exercise 8.2.7 Consider A =

 0 0 a
0 b 0
a 0 0

. Show

that cA(x) = (x−b)(x−a)(x+a) and find an orthog-
onal matrix P such that P−1AP is diagonal.

Exercise 8.2.8 Given A =

[
b a
a b

]
, show that

cA(x) = (x−a−b)(x+a−b) and find an orthogonal
matrix P such that P−1AP is diagonal.

Exercise 8.2.9 Consider A =

 b 0 a
0 b 0
a 0 b

. Show

that cA(x) = (x− b)(x− b− a)(x− b+ a) and find an
orthogonal matrix P such that P−1AP is diagonal.

Exercise 8.2.10 In each case find new variables y1
and y2 that diagonalize the quadratic form q.

q = x2
1 +6x1x2 + x2

2a) q = x2
1 +4x1x2 −2x2

2b)

b. y1 =
1√
5
(−x1 +2x2) and y2 =

1√
5
(2x1 + x2); q =

−3y2
1 +2y2

2.

Exercise 8.2.11 Show that the following are equiv-
alent for a symmetric matrix A.

A is orthogonal.a) A2 = I.b)
All eigenvalues of A are ±1.c)

[Hint: For (b) if and only if (c), use Theorem 8.2.2.]

c. ⇒ a. By Theorem 8.2.1 let P−1AP = D =
diag (λ1, . . . , λn) where the λi are the eigen-
values of A. By c. we have λi =±1 for each i,
whence D2 = I. But then A2 = (PDP−1)2 =
PD2P−1 = I. Since A is symmetric this is
AAT = I, proving a.

Exercise 8.2.12 We call matrices A and B orthog-
onally similar (and write A ◦∼ B) if B = PT AP for an
orthogonal matrix P.

a. Show that A ◦∼ A for all A; A ◦∼ B ⇒ B ◦∼ A; and
A ◦∼ B and B ◦∼C ⇒ A ◦∼C.

b. Show that the following are equivalent for two
symmetric matrices A and B.

i. A and B are similar.
ii. A and B are orthogonally similar.
iii. A and B have the same eigenvalues.

Exercise 8.2.13 Assume that A and B are orthog-
onally similar (Exercise 8.2.12).

a. If A and B are invertible, show that A−1 and
B−1 are orthogonally similar.

b. Show that A2 and B2 are orthogonally similar.

c. Show that, if A is symmetric, so is B.
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b. If B = PT AP = P−1, then B2 = PT APPT AP =
PT A2P.

Exercise 8.2.14 If A is symmetric, show that every
eigenvalue of A is nonnegative if and only if A = B2

for some symmetric matrix B.

Exercise 8.2.15 Prove the converse of Theo-
rem 8.2.3: If (Ax) ·y = x · (Ay) for all n-columns x
and y, then A is symmetric.
If x and y are respectively columns i and j of In, then
xT AT y=xT Ay shows that the (i, j)-entries of AT and
A are equal.

Exercise 8.2.16 Show that every eigenvalue of A
is zero if and only if A is nilpotent (Ak = 0 for some
k ≥ 1).

Exercise 8.2.17 If A has real eigenvalues, show
that A = B+C where B is symmetric and C is nilpo-
tent.
[Hint: Theorem 8.2.5.]

Exercise 8.2.18 Let P be an orthogonal matrix.

a. Show that det P = 1 or det P =−1.

b. Give 2× 2 examples of P such that det P = 1
and det P =−1.

c. If det P =−1, show that I +P has no inverse.
[Hint: PT (I +P) = (I +P)T .]

d. If P is n×n and det P 6= (−1)n, show that I−P
has no inverse. [Hint: PT (I −P) =−(I −P)T .]

b. det
[

cosθ −sinθ

sinθ cosθ

]
= 1

and det
[

cosθ sinθ

sinθ −cosθ

]
= −1 [Remark:

These are the only 2×2 examples.]

d. Use the fact that P−1 = PT to show that
PT (I−P) =−(I−P)T . Now take determinants
and use the hypothesis that det P 6= (−1)n.

Exercise 8.2.19 We call a square matrix E a
projection matrix if E2 = E = ET . (See Exercise
8.1.17.)

a. If E is a projection matrix, show that P =
I −2E is orthogonal and symmetric.

b. If P is orthogonal and symmetric, show that
E = 1

2(I −P) is a projection matrix.

c. If U is m×n and UTU = I (for example, a unit
column in Rn), show that E = UUT is a pro-
jection matrix.

Exercise 8.2.20 A matrix that we obtain from
the identity matrix by writing its rows in a different
order is called a permutation matrix. Show that
every permutation matrix is orthogonal.

Exercise 8.2.21 If the rows r1, . . . , rn of the n×n
matrix A = [ai j] are orthogonal, show that the (i, j)-
entry of A−1 is a ji

‖r j‖2 .
We have AAT = D, where D is diagonal with main
diagonal entries ‖R1‖2, . . . , ‖Rn‖2. Hence A−1 =
AT D−1, and the result follows because D−1 has di-
agonal entries 1/‖R1‖2, . . . , 1/‖Rn‖2.

Exercise 8.2.22

a. Let A be an m×n matrix. Show that the fol-
lowing are equivalent.

i. A has orthogonal rows.
ii. A can be factored as A = DP, where D

is invertible and diagonal and P has or-
thonormal rows.

iii. AAT is an invertible, diagonal matrix.

b. Show that an n× n matrix A has orthogonal
rows if and only if A can be factored as A=DP,
where P is orthogonal and D is diagonal and
invertible.

Exercise 8.2.23 Let A be a skew-symmetric ma-
trix; that is, AT = −A. Assume that A is an n× n
matrix.

a. Show that I+A is invertible. [Hint: By Theo-
rem 2.4.5, it suffices to show that (I+A)x= 0,
x in Rn, implies x = 0. Compute x ·x = xT x,
and use the fact that Ax =−x and A2x = x.]

b. Show that P = (I −A)(I +A)−1 is orthogonal.

c. Show that every orthogonal matrix P such
that I + P is invertible arises as in part (b)
from some skew-symmetric matrix A.
[Hint: Solve P = (I −A)(I +A)−1 for A.]
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b. Because I −A and I +A commute, PPT = (I −
A)(I + A)−1[(I + A)−1]T (I − A)T = (I − A)(I +
A)−1(I −A)−1(I +A) = I.

Exercise 8.2.24 Show that the following are equiv-
alent for an n×n matrix P.

a. P is orthogonal.

b. ‖Px‖= ‖x‖ for all columns x in Rn.

c. ‖Px−Py‖ = ‖x−y‖ for all columns x and y
in Rn.

d. (Px) ·(Py)=x ·y for all columns x and y in Rn.
[Hints: For (c) ⇒ (d), see Exercise 5.3.14(a).
For (d) ⇒ (a), show that column i of P equals
Pei, where ei is column i of the identity ma-
trix.]

Exercise 8.2.25 Show that every 2 × 2 orthog-

onal matrix has the form
[

cosθ −sinθ

sinθ cosθ

]
or[

cosθ sinθ

sinθ −cosθ

]
for some angle θ .

[Hint: If a2 +b2 = 1, then a = cosθ and b = sinθ for
some angle θ .]

Exercise 8.2.26 Use Theorem 8.2.5 to show that
every symmetric matrix is orthogonally diagonaliz-
able.
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